
Titel	Meißel
Relevante(r) Deskriptor(en)	Die Schülerinnen und Schüler können normgerechte Zeichnungen lesen.
	Die Schülerinnen und Schüler können Konstruktions- aufgaben mittels geeigneter Abbildungsverfahren lösen sowie technische Bauteile und Baugruppen normgerecht darstellen.
	Die Schülerinnen und Schüler können technische Bauteile im Hinblick auf ihre Geometrie analysieren und konstruieren.
Lehrstoff	Darstellen und konstruieren technischer Objekte sowie krummer Flächen (Kurven, Flächen, Körper, Transformationen) in zugeordneten Normalrissen und Axonometrien.
Ausbildungsinhalte	Kegel, Kegelschnitte
Methodisch/Didaktische Hinweise	Einzelarbeit
Hilfsmittel	Zirkel und Lineal, CAD
Quelle	Eigenentwicklung und Müllner/Löffler/Asperl: DGII. Darstellende Geometrie.Wien: öbvhpt, 2002
Weitere Beispiele	Pillwein/Asperl/Müllner/Wischounig: Raumgeometrie. Konstruieren und Visualisieren. Wien: öbvhpt, 2006
	Müllner/Löffler/Asperl: DGII. Darstellende Geometrie. Wien: öbvhpt, 2002
Zeitbedarf in Minuten	
Ersteller/in/nen	H. Rassi (www.htlortwein.at)
Schule/Dienststelle E-Mail, Telefon	HTBLVA Graz Ortweinschule h.rassi@gmx.at / rassi@htlortwein.at
Datum der letzten Änderung	1. 4. 2013

Aufgabenstellung: (Angaben als PDF-Datei siehe http://www.htl.at/kop1/)

- 1.) Ein drehkegelförmiger Meißel ist im Aufriss bzw. in Axonometrie gegeben. (Abb. 1)
- a.) Konstruieren Sie Grund- und Kreuzriss des Meißels. Bestimmen Sie insbesondere die Scheitel, die Endpunkte mit Tangenten, sowie jeweils mindestens zwei weitere Punkte der auftretenden Schnittkurven. Um welche Kurven handelt es sich dabei?
- b.) Erzeugen Sie mit CAD ein 3D-Modell des Meißels.

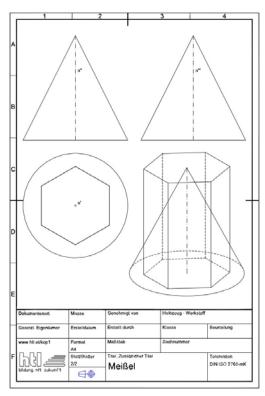


Abb. 1 Abb. 2

- 2.) Ein prismatischer Körner entsteht als Durchschnitt eines Drehkegels und eines sechsseitigen Prismas. (Abb 2 und Abb. 3)
- a.) Konstruieren Sie Auf- und Kreuzriss des Bohrkopfs

 (Abb. 2). Bestimmen Sie insbesondere die Scheitel,
 die Endpunkte, sowie jeweils zwei weitere Punkte der auftretenden Schnittkurven. Um
 welche Kurven handelt es sich dabei?
- b.) Vervollständigen Sie als Freihandzeichnung das axonometrische Bild des Körners (Abb. 2). Bestimmen Sie dabei die Scheitel und die Endpunkte der Schnittkurven.

Vorkenntnisse:

- Aus dem 1. Jahrgang sollte der Umgang mit Hauptrissen und Axonometrien, sowie der ebene Schnitt von Pyramiden bekannt sein.
- Definition und Eigenschaften von Kegelflächen und deren ebene Schnitte
- 3D Grundkenntnisse in CAD.

Lösungsschritte zu 1.a): (Abb. 4) (Lösung als PDF-Datei siehe http://www.htl.at/kop1/) Bei den Schnittkurven handelt es sich um Parabeln, da die Schnittebenen zu jeweils einer Kegelerzeugenden parallel sind.

- (I) Grund- und Kreuzriss des Drehkegels und des Drehzylinders darstellen.
- (II) Bestimmen der Parabelscheitel.
- (III) Ermittlen der Endpunkte mit Tangenten.
- (IV) Konstruktion von Zwischenpunkten mit Hilfe eines Schichtenschnittes.
- (V) Parabeln einzeichnen und Risse vervollständigen.

Hinweis: Im Kreuzriss sind die Endpunkte zugleich Umrisspunkte, damit sind die Kegelumrisserzeugenden zugleich die geforderten Parabeltangenten.

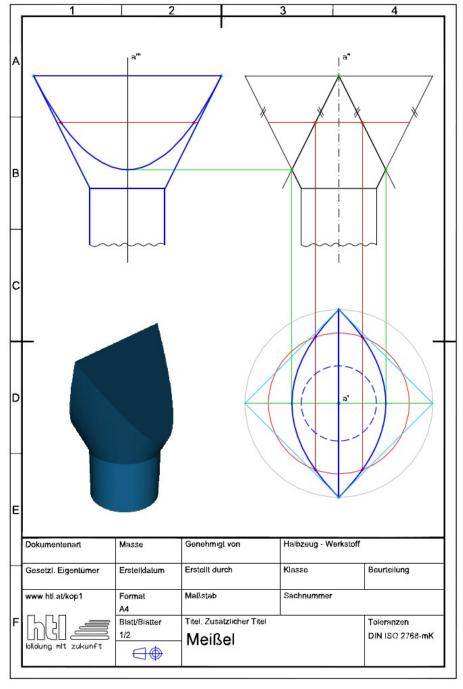
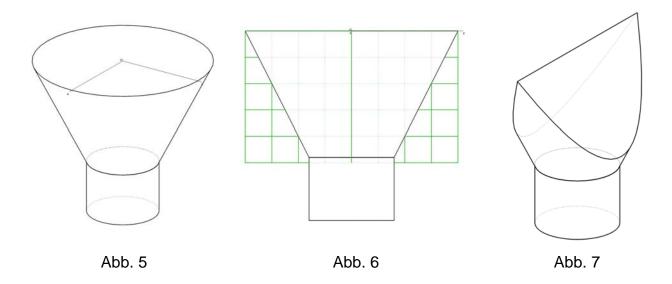



Abb. 4

Lösungsschritte zu 1.b):

- (I) Erzeugen des Kegelstumpfes mit dem aufgesetzten Drehzylinder z. B. als Rotationskörper.(Abb. 5).
- (II) Bestimmung der Schnittprofile z. B. durch ein geeignetes Hilfsraster (Abb. 6).
- (III) Durchführung der Schnitte (Abb. 7).

Lösungsschritte zu 2.a): (Abb. 8) (Lösung als PDF-Datei siehe http://www.htl.at/kop1/)

Bei den Schnittkurven handelt es sich um Hyperbeln

- (I) Darstellung des Prismas in Auf- und Kreuzriss.
- (II) Die Höhe der Scheitel ist im Aufriss durch den Schnitt mit den 3. Hauptebenen bestimmt.
- (III) Die Höhe der Endpunkte kann im Kreuzriss abgelesen werden.
- (IV) Die Zwischenpunkten werden hier jeweils mit Hilfe eines erstprojizierenden Schnittes durch die Kegelspitze konstruiert.
- (V) Hyperbeln einzeichnen und Risse vervollständigen.

Hinweis: Im Kreuzriss sind die Endpunkte zugleich Umrisspunkte.

Lösungsschritte zu 2.b): (Abb. 8)

- (I) Die Höhe der Scheitel wird mit Hilfe eines erstprojizierenden Schnittes durch die Kegelspitze konstruiert.
- (II) Die Höhe der Endpunkte wird analog zu den Scheiteln bestimmt.
- (III) Hyperbeln einzeichnen und Körner vervollständigen.

Hinweis: Hier wurden auch die Umrisspunkte bestimmt.

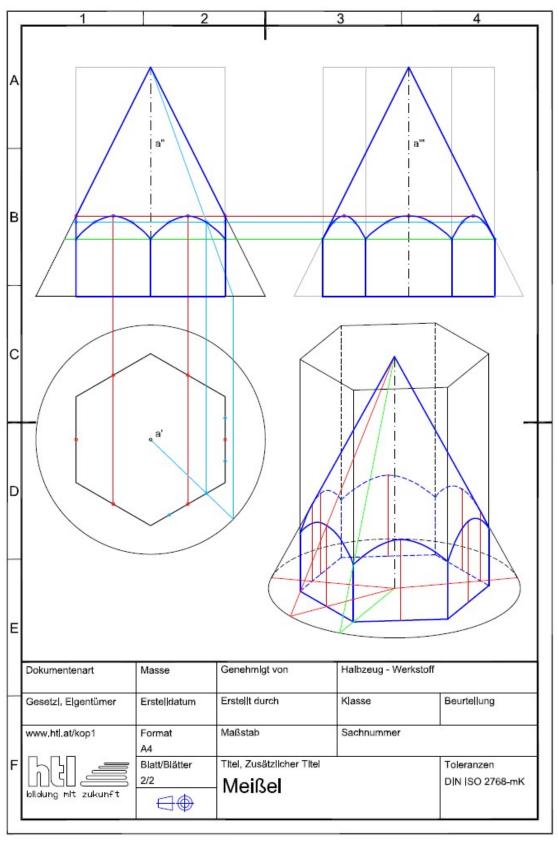


Abb. 8